

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the SOCIOTAL Consortium.
Neither this document nor the information contained herein shall be used, duplicated or

communicated by any means to any third party, in whole or in parts, except with prior written
consent of the SOCIOTAL consortium.

Specific Targeted Research Projects (STReP)

SOCIOTAL
Creating a socially aware citizen-centric Internet of Things

FP7 Contract Number: 609112

WP3 ï Privacy-aware communication

Deliverable report

Contractual date of delivery: M30
- February 2016

Actual submission date:
14/03/2016

Deliverable ID: D3.2.2

Deliverable Title:
Privacy-aware context-sensing information
exchange

Responsible beneficiary: 1/UNIS

Contributing beneficiaries: UNIS, UC, UMU, CRS4

Estimated Indicative Person
Months:

18

Start Date of the Project: 1 September 2013 Duration: 36 Months

Revision: Final
Dissemination Level: Public

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the SOCIOTAL Consortium.
Neither this document nor the information contained herein shall be used, duplicated or

communicated by any means to any third party, in whole or in parts, except with prior written
consent of the SOCIOTAL consortium.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page III

Document Information

Document ID: D3.2.2
Version: 0.6
Version Date: 14. March 2016
Authors: Colin OôReilly, Niklas Palaghias, Carmen Lopez de la Torre, Ignacio

Elicegui Maestro, Alberto Serra, Jose Luis Hernandez Ramos, Jorge
Bernal Bernabe, Antonio Skarmeta Gomez

Security: Confidential

Approvals

 Name Organization Date Visa

Project
Management

Team
Klaus Moessner UNIS

Internal Reviewer Sutharshan Rajasegarar UME

Internal Reviewer Christine Hennebert CEA

Document history

Revision Date Modification Authors

0.1 18/01/2016 TOC and initial assignments UNIS

0.2 18/02/2016 Contributions to Section 3 UC

0.3 20/02/2016 Contributions to Section 2 UMU, CRS4

0.4 22/02/2016 Contribution to Executive Summary and Introduction UNIS

0.5 01/03/2016 References added UNIS

0.6 09/03/2016 Addressing internal review comments
UNIS, UMU, CRS4,
UC

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page IV

Content

Section 1 - Introduction .. 7

Section 2 - SocIoTal Bubbles ... 8

2.1 SocIoTal Bubble creation on the web user environment10

2.2 Obtaining CP-ABE keys and discovering bubbles ...11

2.3 Sharing information within bubbles ..12

Section 3 - SocIoTal Communities ..15

3.1 SocIoTal Community definition..15

3.2 SocIoTal Communities Manager ..15

3.3 Information sharing inside a SocIoTal Community ..23

Section 4 - Conclusions ...28

References ..29

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page V

Table of Figures

Figure 1: Bubble definition example... 8
Figure 2: SocIoTal bubbles registration, discovery and operation overview 9
Figure 3: SocIoTal bubbles creation ...10
Figure 4: SocIoTal bubbles definition ..11
Figure 5: Obtaining CP-ABE keys and discovering bubbles ...12
Figure 6: Subscription message example for CP-ABE based group communication13
Figure 7: Update message example for CP-ABE based group communication14
Figure 8: Communities Manager integration ...17
Figure 9: Communities Manager Updated implementation ...18
Figure 10: Community-Token request/validation flow ...20
Figure 11: JSON format Community-Token example ...21
Figure 12: Communities Manager registerUser payload example ...23

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 6/30

Executive summary

This deliverable reports on the progress of Task 3.2 which aims to provide a framework for
privacy preserving context-sensitive communication. Deliverable 3.2.2 aims to deliver a
framework to allow devices to securely share information between them.

The main objective of this deliverable is to detail the secure exchange of information between
SocIoTal devices. The first method of secure communication is ñtrust bubblesò, and these are
defined in Section 2. Bubbles are meant to be dynamic and created spontaneously and are
built using a pre-defined set of attributes. They provide a secure channel to share data or
access resources among entities with the same attribute values.

The second method of secure communication is ñcommunitiesò and these are detailed in
Section 3. The SocIoTal communities allow devices to access information that is required by
all members of a subset of users in the SocIoTal framework. Communities are more static
than bubbles and are mainly oriented to support usersô personal interests on sharing
concrete sets of own information or own resources with no initial restrictions related to
location or internal relationships among member entities. Section 4 provides the conclusions
for this deliverable.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 7/30

Section 1 - Introduction

The aim of SocIoTal is to move towards a citizen centric Internet of Things (IoT) where users
are encouraged to share their devices and information for the benefit of the local community.
Previous deliverables in WP3 have focussed on issues such as device discovery and device
centric enablers to contribute to privacy and trust paradigms. Another key aspect of
encouraging citizens to share their devices and information is ensuring that the exchange of
information is secure and is managed in an intuitive and easy manner. The aim of this
deliverable is to detail the methods by which the secure sharing of information can be
performed. The problem is approached from two different angles, the first uses dynamic
groups of devices called ñBubblesò and the second uses more static groups called
ñCommunitiesò.

Section 2 details bubbles, which are dynamic collections of devices which are able to share
information securely. Bubbles are created and managed in an analogous manner as the
other entities within the SocIoTal framework. The bubble is registered in the Context
manager (relying on the Web User Environment), by defining which particular identity
attributes are going to be needed to be part of the bubble. Bubbles do not actually need to
explicitly define the users that belongs to the bubble, since it is achieved by the fact that only
users that hold those identity attributes (and therefore will have the cryptographic keys to
satisfy the CP-ABE attribute policy) will be able to see the exchanged encrypted data in the
scope of the bubble. Devices belonging to a bubble are able to publish information in the
SocIoTal CM and other devices, belonging also to the bubble, are able to subscribe to
information from a specific bubble and to receive notifications. Information held on the CM is
encrypted to ensure the secure flow of information between devices in a bubble. The
framework for the creation of bubbles in the SocIoTal Integrated Platform has been detailed
in deliverables from WP2. In addition, the methods by which information can be securely
exchanged between bubbles were detailed in D2.2 [1] and D3.3 [2]. In this deliverable, the
ñwhole storyò of a bubble is presented. The implementation and integration of bubbles is
defined in regard to the whole SocIoTal integrated platform.

Communities differ from bubbles in that they are more static in nature and provide a more
closed environment in which to securely share information. Communities, unlike Bubbles,
define which particular users, among the ones registered in IdM Keyrock, belongs to the
community. As their name suggests, they are more akin to communities in the real-world
which are relatively static and share common interests. A common reason to create a
community is due to some shared interest. The community provides a method for securely
sharing information with others who share the same interest. Section 3 details the
implementation and operation of communities within the SocIoTal framework. Communities
have been introduced in previous deliverables, D3.2.1 [3] detailed community creation and
management, and D3.3 introduced the method by which secure sharing of information can
occur. In addition, D5.2 [4] provided an initial evaluation of the Communities Manager. This
deliverable provides an update on the work performed on SocIoTal Communities. An update
on the implementation and functionalities of the communities is detailed. In addition, the final
documentation for the end-user is provided. This content is available on the SocIoTal Wiki
and will be used in the SocIoTal pilots of Task 5.3.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 8/30

Section 2 - SocIoTal Bubbles

Given the scale and dynamism of the envisioned IoT scenarios, it is expected that smart
objects often operate as groups of entities, for instance, to accomplish a specific task in a
cooperative way. The concept of group is crucial in the IoT to cope with environments with a
huge number of smart objects interacting with each other. Moreover, the application of
security mechanisms involving groups of devices with dynamic and ephemeral relationships
is a challenging aspect. In order to address such requirements, SocIoTal envisions the need
of a security management among groups of smart objects wishing to share information with
each other. Specifically, SocIoTal bubbles are considered as a group of smart objects that
are intended to share information under a common set of security and privacy restrictions.
These bubbles can be created according to preferences that are specified by the owners of
such devices, stating different constraints about the relationships that can be established by
their smart objects with other devices. The creation, management and operation of bubbles
have been addressed under WP2 foundations, as well as T3.3. These were based on the
main security approaches which were presented in D2.2 and D3.3 In this section, a
description about how such mechanisms have been instantiated and integrated within the
project is provided, by giving details about the creation, operation and exploitation of bubbles
within the SocIoTal framework.

Before starting the sharing information process within a bubble, it must be modelled and
registered:

- In order to allow other smart objects to join the bubble later ;
- in order to enable a secure communication among the devices belonging to the bubble.

Furthermore, the registration of a bubble will allow other users to discover it. Once
discovered, the user can add its smart objects to the bubble. In this case, based on the
definition of entities and the data model that have been defined within the project, shows an
example about how a bubble can be defined by making use of the same data model that is
employed for other entities in the Context Manager Figure 1.

ñcontextRegistrations ò: [{

 ñentitiesò: [{

 ñidò: ñbubbleA ò,

 ñtypeò: ñhttp://sociotal.namespace.bubbleò,

 ñisPatternò: ñfalseò

 }],

 ñattributesò: [{

 ñnameò: ñBubbleEntityMem bersò,

 ñvalueò: [ñentityId_0 1", " entityId_02 ", ñentityId_03ò],

 ñtypeò: ñhttp://sociotal.namespace.bubble.bubbleEntityMembersò

 },

 {

 ñnameò: ñorganization ò,

 ñvalueò: ñumuò,

 ñtypeò: ñurn:ie tf:params:scim:schemas:c ore:2.0 : organization ò

 }]

}

Figure 1: Bubble definition example

This representation of a bubble can be modelled as the payload of a registerContext request
with the following meaning:

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 9/30

¶ entities: the entities (bubbles) to be registered. It includes the bubbleô id (ñbubbleò in
the example), the type (as ñhttp://sociotal.namespace.bubbleò) and the isPattern field,
which is always stated to false when using registerContext to register a new bubble.

¶ attributes: it makes a reference to a list of attributes related to the bubble(s) to be
registered by specifying their name, type and value. In the example, the attribute
ñBubbleEntityMembersò, type
ñhttp://sociotal.namespace.bubble.bubbleEntityMembersò, is providing the list of
entitiesô id that are part of this bubble. In addition to specifying the list of entities that
composes a bubble, it is necessary to detail the identity attributes required to encrypt
and decrypt information within the bubble. For this purpose, such attributes are
indicated to be ñhttp://sociotal.namespace.bubble.required type. In the example, the
attribute used is ñurn:ietf:params:scim:schemas:core:2.0:organizationò with the value
ñumuò. However, other identity attributes can be employed to restrict the way the
information have shared within a bubble. Specifically, these attributes are:

o urn:ietf:params:scim:schemas:core:2.0:domain
o urn:ietf:params:scim:schemas:core:2.0:department
o urn:ietf:params:scim:schemas:core:2.0:streetAddress
o urn:ietf:params:scim:schemas:core:2.0:locality
o urn:ietf:params:scim:schemas:core:2.0:postalCode
o urn:ietf:params:scim:schemas:core:2.0:country.

Web User
Environment

Context
Manager

Group Sharing App

Mobile User
Environment

Attribute Authority

Group Manager

1a.- getCP-ABE keys()

4.- Update bubble deviceΩs
values

(encrypted with CP-ABE
attribute policy)

1. Define Bubble (requiredAttributes,
devices)

KeyRock IdM

Bubble member
Producer

Group Sharing App

Mobile User
Environment

Bubble member
Consumer

2.- getUserAttributes()

1b.- getCP-ABE keys()

2.- getAvailableBubbles

3.- Subscribe to
BubbleΩs devices

5.- BubbleΩs devices data

Figure 2: SocIoTal bubbles registration, discovery and operation overview

As already described in D3.3, SocIoTal envisions the use the CP-ABE cryptographic scheme
as an alternative to handle security and privacy aspects, which are related to the creation
and management of bubbles. Figure 2 shows a high-level overview of the whole process to
define and discover bubbles, as well as to get CP-ABE keys to enable a secure information
sharing mechanism within bubbles. Furthermore, it states the main interactions among other

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 10/30

SocIoTal components that are required by such a process. First of all, a user, through the
Web User Environment, is able to define bubbles (step 1) by specifying a set of devices to be
added and the identity attributes that are required to be shared information within that
bubble. This bubble is registered in the Context Manager with the data model previously
described. Furthermore, it should be noted that this process implies the registration of the
bubble as a new entity in the Context Manager as an encrypted view. So when the value of
this entity is updated through CP-ABE, only the encrypted view will be updated. Then, other
users, through the Mobile User Environment, acting as data producers and consumers, can
try to discover this bubble in the Context Manager (step 2) making use of NGSI9-10
interfaces (e.g. via queryContext method). It should be noted that these users have obtained
CP-ABE keys associated to their identity attributes in a previous step (1a-b and 2 blue lines).
After previous processes have been completed, a consumer user subscribes to receive
notifications from the bubble that was previously discovered (step 3). Then, a producer user
updates the value of the encrypted view of such a bubble, by making use of CP-ABE that
indicates the policy employed to encrypt such a value (step 4). This policy makes reference
to the identity attributes that are specified in the bubble definition, and it must be satisfied by
consumers in order to be able to decrypt the new value (step 5).

Below, a more detailed description of the main steps of the described process is provided.

2.1 SocIoTal Bubble creation on the web user environment

The User Environment (D4.2-D4.3) is responsible for the creation and the defining of a
bubble, associating to it a set of attributes. To do this, the web user environment provides a
friendly user interface to create a bubble in the same way the user creates the other entities
(i.e. the weather station) inserting the attributes such as the name, the ID, and the type. They
can also add other attributes to enrich the definition of this bubble.

First of all, the user chooses to create a context manager device selecting Bubble for the
device type list (Figure 3).

Figure 3: SocIoTal bubbles creation

After that, the web user environment shows the form to insert the details of the bubble: Entity
Name, ID, Project, Deployment, Content Type, Attributes, Figure 4.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 11/30

Figure 4: SocIoTal bubbles definition

The template suggests Organization and ProjectName as default attributes, but the user can
add other attributes pressing the + button and selecting from the list that includes the set of
attributes that was previously defined (e.g. department or locality) under the SCIM schema.

2.2 Obtaining CP-ABE keys and discovering bubbles

As already mentioned, in order to enable a secure sharing mechanism within bubbles, to
have a process for delivering CP-ABE keys is needed, as well as other parameters for basic
cryptographic operations. This process is shown in Figure 5, which provides a high-level
overview involving the Attribute Authority (AA). According to the Figure, producers and
consumers, which are intended to share information via the Context Manager in a secure
way, apply for a CP-ABE Key to the AA. Then, the AA authenticates the user and, it queries
its attributes associated to the Keyrock IdM. This one maintains the identity of the user and
their associated attributes. During this, the process it is verified that the requester smart
object is the one that it claims to be.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 12/30

Attribute Authority

Authentication KEM

Producer

Consumer

Authentication

Authentication KEM

KEM

g
e

t C
P-A

B
E

 k
e

y
g

e
t C

P-A
B

E
 k

e
y

key generation

C
P-

A
B

E
 k

e
y

C
P-

A
B

E
 k

e
y

Group Manager

Group Manager

SocIoTal Context
Manager

CP-ABE key

CP-ABE key

CP-AB engine

CP-AB engine

Figure 5: Obtaining CP-ABE keys and discovering bubbles

It should be noticed that the process for obtaining the cryptographic keys is the same for any
bubble and can be done just once, the first time the user requests the keys associated to all
the attributes of his whole identity. Then, the same cryptographic material can be used for
different bubbles that may require a different combination of attributes over the whole
identity. Notice that since user has not joined or created bubbles, no one can discover that
he is not associated with an identity, preserving usersô privacy. Nonetheless, users are
enabled to discover the bubbles along with the identity attributes that are needed to be part
of the bubble, by interacting with the SocIoTal Context Manager. To this aim, the bubble is
registered as an entity, attaching the identity attributes that will be needed to demonstrate.
The bubble registration allows target devices to be aware of the existence of a bubble, as
already mentioned in the previous subsection. Consequently, anyone can discover the
bubble and the required attributes that are registered in the Context Manager, but only those
that satisfy the policy of attributes can decrypt the shared data. Thus, since users can
discover the required attributes for that bubble, they know the policy of attributes and the
keys that must be used to encrypt and decrypt the data exchanged in the bubble.

2.3 Sharing information within bubbles

After a user has discovered a bubble, he is able to add his smart objects exchanging
information in a secure way through the use of keys and parameters previously obtained.
During this stage, the application of CP-ABE is envisioned to ensure a proper and effective
operation of the bubble, in order to avoid any data leakage out of the bubble. Specifically, it is
intended to allow information to be shared among members of a bubble, enabling secure
one-to-many communication. This scheme can be applied, for example, to allow information
sharing through the well-known publish/subscribe pattern through the Context Manager, in
which members of a bubble (acting as subscribers) are able to decrypt information being
disseminated by other members (acting as publishers).

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 13/30

As it is shown in the previous figure, producers and consumers make use of the functionality
provided by the on-device Group Manager that is endowed with a CP-ABE engine for
cryptographic operations. In addition, it is provisioned with NGSI-9/NGSI-10 API interfaces,
in order to enable the communication with the SocIoTal Context Manager. By using the
publish/subscribe scheme, a consumer entity is able to subscribe against a specific entity to
receive updates from it. An example of this message is shown in Figure 6. It should be
pointed out that the id of this message is actually referencing to the encrypted view of the
entity under a specific bubble. Therefore, the value of this entity is always updated through
the combination of attributes that was specified during the bubble creation process.

Payload:

{

 "entities": [

 {

 "type": " typeA ",

 "isPattern": "false",

 "id": " entityId_01_bubbleA "

 }

],

 "attributes": [

 "temperature"

],

 "reference": "http://83.33 .158.192:9000/entity",

 "duration": "PT5M",

 "notifyConditions": [

 {

 "type": "ONCHANGE",

 "condValues": [

 "temperature"

]

 }

],

 "throttling": "PT5S"

}

Figure 6: Subscription message example for CP-ABE based group communication

In addition, Figure 7 shows an example of an updated message (i.e., by using the
updateContext method from NGSI9-10) in which the value of the attribute temperature is
updated with a new encrypted value. It is modelled as a metadata of it under the name cph.
For a more detailed description about these messages, see D3.3 [2].

Payload:

{

 "contextElements": [

 {

 "type": " typeA ",

 "isPattern": "false",

 "id": " entityId_01_b ubbleA ",

 "attributes": [

 {

 "name": "temperature",

 "type": "string",

 "value": "temperature_value_ecncryptedd",

 "metadatas": [

 {

 "name": "cph",

 "type": "string",

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 14/30

 "value": "encrypted_value "

 }

]

 }

]

 }

],

 "updateAction": "UPDATE"

}

Figure 7: Update message example for CP-ABE based group communication

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 15/30

Section 3 - SocIoTal Communities

A SocIoTal Community provides a closed environment where only registered users and
entities can share information: registered resources/entities will publish data that only
registered users will be able to read. The original idea refers to a SocIoTal Community,
created and managed by a SocIoTal user, as a group of users and resources with a common
objective or inquisitiveness. A role set definition will decide who can do what within the
community.

This section describes the SocIoTal Communities Manager tool and its functioning, including
the creation, operation and exploitation of communities within the SocIoTal framework. An
initial evaluation was performed as part of D5.2. In this deliverable, further details will be
given.

3.1 SocIoTal Community definition

The concept of the SocIoTal Community was initially introduced in D2.1 [5] and is based on
the types of relationships among smart objects and users they presented there. In this case,
the usual driver of communities is the common interest relationship, putting together users
and information related to a similar target or application. This way, SocIoTal defines a
community as a secure cooperation between different producer users, making entities
(devices, services, events, resources etc) available to selected consumer users (community
members), to achieving a common objective.

Although an ad-hoc community creation mechanism is also possible in the SocIoTal
Integrated Platform, the project provides a platform-based communities structure,
established between users and entities connected to the same infrastructure network. This
structure, built in SocIoTal Integrated Platform, provides centralized services to SocIoTal
users, as creation and definition of communities, registering and management of users, roles
management and so on.

3.2 SocIoTal Communities Manager

Within the SocIoTal framework, the Communities Manager is the element that provides the
Communities creation and management mechanisms. It covers the functionalities assigned
to the Communities Service (VE Service), detailed on D1.3.1 [6] in the SocIoTal Architecture
(as part of the SocIoTal Enablers and Tools) and directly links with the Identity Management
and Context Management services.

The main functionalities of the Communities Manager have been introduced in D3.2.1 [3]
(Community creation and management) and D3.3 [2] (Secure Group Sharing for
Communities and Bubbles) and its initial instance architecture is shown in D5.2 [4] (Initial
Evaluation of Communities Manager). This section provides an updated vision of this
component implementation and functionalities, linked to the information published for the
final user through the SocIoTal Wiki.

SocIoTalôs Communities Manager offers a centralized point to create SocIoTal Communities
for registered users to, in turn, register entities and share them. SocIoTal Communities,
therefore, provides a way for interested user to share interesting data and/or to access
interesting resources whilst SocIoTal Communities Manager implements the mechanisms to
create and manage these communities.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 16/30

From a high level point of view, this SocIoTal component will manage:

¶ Users: represent user entities within the SocIoTal Communities framework, keeping the
credentials (names, passwords, roles and tokens) needed to be authenticated within
the Communities Manager and the SocIoTal framework plus other extra information
relevant for other SocIoTal applications (address, nicknames, organization, etc.). The
SocIoTal user will be created and managed using the SocIoTal IdM, so registered
users through other SocIoTal tools (such the User Environment) can be also used
within the Communities tools and vice versa.

¶ Communities: seen as groups of users and resources identified by a name and an id
plus a description. The Communities Manager will provide the mechanisms to identify
a user as member of a given community whilst a predefined set of roles will identify
the different rights on it. Communities can be created by SocIoTal registered users
and they, as community creators, will be able to manage them (add new users,
modify a community or delete it).

¶ Domains: as a group of isolated communities and users. Every user and community will
be linked to only one domain, with the possibility to be duplicated under other
different one. In current Communities Manager instance, a default domain (called
SocIoTal) will be set for pilots and initial developments and new domains, for extra
purposes, may be created by the SocIoTal Platform administrator.

¶ Tokens: provided by the Communities Manager and requested by a user, the
Community-Tokens, represented by their corresponding UUID (Universal Unique
Identifier) will identify the requestor user (previously registered within the
Communities Manager), the community and the domain it belongs to, providing also
extra related information such as the role the requestor has and its validity (as well as
its expiring date).

The Communities Manager provides mechanisms to register users, manage communities
and request and validate Community-Tokens. These methods collection is published and
updated in the SocIoTal Wiki [8] and also reflected in the future deliverable D1.3.3.

The current implementation of SocIoTal Communities Manager in Figure 8 relies on FIWARE
Identity Management Generic Enabler available implementation, the Keyrock [9]. An instance
of the Keyrock (Version 4.4.1) is also provided by the SocIoTal IdM so, user management
will be implemented using SocIoTal IdM whilst the rest of communitiesô management
functionalities will directly use this SocIoTal Keyrock instance. This way, integration issues
are addressed, guaranteeing the same set of users and identities (the same userôs directory)
for the whole set of SocIoTal components and compatible identification/authentication
mechanisms.

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 17/30

Figure 8: Communities Manager integration

From the point of view of the user (either developer or final user), SocIoTal Communities
Manager provides a HTTP/HTTPS RESTful API [8] divided into three main set of methods:

¶ Users API: groups the functionalities related to the usersô creation and management.
This set of functionalities are directly linked to SocIoTal IdM, using the provided JAVA
API and its SCIM compliant interface. This way, all SocIoTal components link to the
same shared userôs directory.

¶ Communities API: contains the methods to create (and manage) communities and
assign users and roles. It is implemented through the Keystone V3 API provided by
the Keyrock instance of SocIoTal, shared also by the SocIoTal IdM. This way,
SocIoTal IdM will have access also to the domains/communities schema created by
the Communities Manager.

¶ Community-Tokens API: includes the request and retrieve community-tokens
operations and the community-tokens validation. It is implemented over the same
token schema SocIoTal IdM uses to validate users by user/password mechanism, so
community-token can be also used to authenticate users

For the SocIoTal Integrated platform administrator, with access to the platform instance, the
Keystone python-openstackclient (V3) [10] including http RESTful V3 API and Keystone
command line, will be available, following Keyrock APIs documentation [11]. These API
collections will allow the administrator to configure extra parameters, as create and manage
new domains, add/remove new roles and manage communities and users.

According to what has been mentioned, SocIoTal Communities Manager requires an
operative instance of the SocIoTal IdM component, including its Keyrock instance with http
OpenStack Keystone V3 interface support:

FP7 Contract Number: 609112
Deliverable report ï WP3 / D3.2.2
Document ID: SOCIOTAL_D3.2.2-v0.6

Version Date: 14 March 2016
Security: Confidential

Page 18/30

¶ The SocIoTal IdM component provides the Usersô Directory to store all the identities
created within the Communities manager, using the SCIM standard [12]

¶ The Keyrock, through its supported keystone core, provides:
o Domains & Communities directory that supports the mechanisms to create,
store and manage all the communitiesô structure.

o Tokens Management tools to create, store, query, retrieve and validate the
community tokens.

The IP addresses and ports of these required instances can be given through the
corresponding configuration file of the Communities Manager. Its northbound offers to users
a RESTful API to manage user identities and communities, as well as to query, retrieve and
validate Community Tokens, further used to integrate with other SocIoTal platform
components. Current working SocIoTal Communities Manager version supports FIWARE
KeyRock IdM versions 4.3 and 4.4.

Figure 9: Communities Manager Updated implementation

SocIoTal Communities Manager building blocks, methods and functionalities have been
developed using Eclipse IDE for Java Developers (Indigo version) [30]. It utilised Java SE
Development Kit 7 from OpenJDK (java-1.7.0-openjdk [31]) and Open Java runtime 7
(openjdk-7-jre [32]) to develop and run the resulting Java code, including the RESTEasy
JAX-RS implementation libraries provided by JBoss [33] to build RESTful Web Services and
RESTful Java applications. For the prototype version, SocIoTal Communities Manager
methods and APIs are distributed as a web application archive (WAR) to be deployed within
a Web Application Server. For the instances involved in the different tests performed so far,
JBoss AS 7.1 [34] has been selected. Figure 9 details the updated implementation.

